SensMat Logo

New paper on Classification and Quantification of Volatile Organic Compounds (VOC).

7 October 2022

Donatella Puglisi and Guillem Domènech-Gil from Linköping University (LiU) are the authors of a new peer-reviewed article in the open-access journal Sensors: “A Virtual Electronic Nose for the Efficient Classification and Quantification of Volatile Organic Compounds”. The paper demonstrates the possibility of efficiently discriminating, classifying, and quantifying short-chain oxygenated VOCs in the parts-per-billion concentration range, by exploiting the synergy between virtual electronic noses and machine learning techniques. The methodology followed and analysis carried out provide an alternative approach to overcoming the issue of gas sensors’ selectivity, and have the potential to be applied across various areas of science and engineering.

https://doi.org/10.3390/s22197340

Linear discriminant analysis results for dry air, formaldehyde, formic acid, and acetic.

The ellipses, as well as the different colours and shapes, are a visual guide to help differentiate gas.



The 4 last news

Latest news from the SensMat Project

==> Whether you are a future user or an investor, feel free to contact us at sensmat@bassetti.fr   Dear Visitors, […]

New paper on Classification and Quantification of Volatile Organic Compounds (VOC).

Donatella Puglisi and Guillem Domènech-Gil from Linköping University (LiU) are the authors of a new peer-reviewed article in the open-access journal […]

New paper on sensors using RFID technology

In the framework of SensMat activities, UBO, CEA and IC have authored a new peer-reviewed article in the open-access journal […]

Presentation of the SensMat Solution – Final Video

As the activities of the SensMat project are about to be completed, CEA and BASSETTI have joined their efforts to […]